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“Now inflammation as understood in man and the higher animals is a phe-
nomenon that almost always results from the intervention of some pathogenic 
microbe. So it is held that the afflux of mobile cells towards points of lesion 
shows the organism’s reaction against foreign bodies in general and against 
infectious microbes in particular. On this hypothesis, disease would be a fight 
between the morbid agent, the microbe from outside, and the mobile cells of 
the organism itself. Cure would come from the victory of the cells and immu-
nity would be the sign of their acting sufficiently to prevent the microbial 
onslaught” (Ilya Mechnikov, Nobel lecture, 1908). Mechnikov’s conclusions 
were based on his seminal experiments involving the application of splinters 
to larvae of the starfish, Bipinnaria, that led to the discovery of phagocytosis 
as a critical factor in host defense. In the same lecture, Mechnikov noted that 
individuals have different susceptibility to infections: “It is often seen that in 
households where all members are exposed to the same danger, or again in 
schools or troops where everyone lives the same life, disease does not strike 
everyone indifferently.”

The overriding theme of this textbook  – that our immune system must 
sense pathogens, migrate to sites of infection, and kill pathogens or at least 
limit their growth to avoid disease, and that disorders of the immune system 
predispose to infection – is echoed in Mechnikov’s prescient statements made 
110 years ago. The progress made in our understanding of the immune sys-
tem and development of novel immunotherapies for infectious diseases, can-
cer, autoimmunity, and other disorders has been extraordinary. The challenge 
of this textbook is to link knowledge about host defense to assist clinicians in 
a practical fashion in the care of patients with suspected or known immuno-
deficiencies and infectious diseases. In addition to practical knowledge 
applied at the bedside, we also aim to provide an understanding of gaps in 
knowledge, cutting-edge technology in immunotherapy, and future directions 
of research.

Because of the importance in understanding the normal immune system as 
a prerequisite for understanding immunodeficiencies, this textbook provides 
detailed overviews of phagocyte biology, complement, cytokines, and other 
soluble mediators of immunity, mucosal immunity, and T-cell and B-cell 
immunity. The next section of the textbook is focused on primary immunode-
ficiencies. Indeed, hundreds of primary immunodeficiencies have been 
described, the majority resulting from defects in single genes. From these 
patients, we learn that our immune system has redundant pathways for host 
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defense, and deficits in specific genes lead to susceptibility to specific 
pathogens.

The majority of immunodeficiencies are acquired rather than inherited. 
The major acquired immunodeficiencies include HIV infection, cancer, trans-
plantation, and immunosuppressive therapy for autoimmune diseases. Among 
this large group of patients with acquired immunodeficiencies, important dif-
ferences in infection risk are observed, and even within these patient groups, 
substantial heterogeneity exists regarding the underlying disease and inten-
sity of immunosuppressive therapy. Severely immunocompromised patients 
can have substantial exposure to antibacterial, antifungal, and antiviral agents, 
both as prophylaxis and as treatment. In addition, these patients are frequently 
hospitalized and are at risk for nosocomial infections. It is therefore impor-
tant to understand the growing trends in antimicrobial resistance and judi-
cious use of antibacterial, antifungal, and antiviral agents to guide appropriate 
therapy. Chapters written by expert clinicians provide practical evidence-
based approaches to prevention, diagnosis, and treatment of infectious com-
plications in these patient populations.

The last chapters address standard and novel approaches for enhancing 
host defense in immunocompromised patients. They include vaccination of 
patients and household members and immunoglobulin therapy. Finally, dedi-
cated chapters on stem cell transplantation for patients with primary immuno-
deficiencies, adoptive cellular immunotherapy, and gene therapy will provide 
readers with insight into these rapidly evolving and cutting-edge therapies.

I hope that this textbook will be of value to a broad readership, from train-
ees to clinicians and scientists interested in the fields of infectious diseases 
and immunology. I want to extend my gratitude to the expert authors who 
contributed chapters to this textbook. Needless to say, the success of this 
textbook is a direct result of their knowledge and effort. I also want to thank 
the staff at Springer for their helpful suggestions, efficiency, and commitment 
to the project.

Buffalo, NY, USA Brahm H. Segal
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 Origin and Development 
of Phagocytes

Phagocytic leukocytes are important for innate 
and acquired immunity. These cells are also 
involved in the initiation and resolution of the 
inflammatory response, and they maintain tissue 
homeostasis in the steady state. There are multi-
ple types of phagocytes, and each can contribute 
uniquely to the maintenance of human health and 
the defense against microorganisms. Phagocytes 
originate from self-renewing and multipotent 
hematopoietic stem cells in bone marrow or dur-
ing embryogenesis from yolk sac and/or fetal 
liver stem cells [1–3]. In the traditional model of 
hematopoiesis, multipotent progenitor (MPP) 
cells differentiate into common lymphoid pro-
genitor (CLP) and common myeloid progenitor 

(CMP) cells (Fig.  1.1). CLPs differentiate ulti-
mately into B cells, T cells, and natural killer 
cells. The CMPs give rise to granulocyte- 
macrophage progenitors (GMPs), which can then 
differentiate ultimately into phagocytes, includ-
ing granulocytic phagocytes (neutrophils, eosin-
ophils, and mast cells), and mononuclear 
phagocytes (monocytes, macrophages, and den-
dritic cells) [1].

Recent findings indicate that MPPs can differ-
entiate into a lymphoid-myeloid multipotent pro-
genitor cell (rather than a direct differentiation of 
MPPs to CLPs as described above), which in turn 
gives rise to GMPs, CLPs, or early thymic pre-
cursors (Fig.  1.1) [4]. Differentiation to phago-
cytes from GMPs in this model is similar to that 
in the traditional model. It is also noteworthy that 
dendritic cells and monocytes/macrophages can 

Fig. 1.1 Hematopoiesis and production of phagocytes. 
Leukocytes originate from embryonic progenitor cells in 
the fetal yolk sac, multipotent hematopoietic stem cells in 
bone marrow, and/or fetal liver stem cells. BMCP baso-
phil/mast cell progenitor, CDP common dendritic cell, 
CLP common lymphoid progenitor, CMP common 

myeloid progenitor, DC dendritic cell, EPC embryonic 
progenitor cell, GMP granulocyte-macrophage progeni-
tor, HSC hematopoietic stem cell, LMPP lymphoid- 
primed multipotent progenitor, MDP macrophage-dendritic 
cell progenitor, MEP megakaryocyte-erythrocyte progeni-
tor, MPP multipotent progenitor

T. Nygaard et al.
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be derived from reprogramming of CLPs by spe-
cific cytokines [1, 5]. Therefore, the current 
model of hematopoiesis is not absolute and will 
need revision and updating as new discoveries 
are made.

Not all phagocytic leukocytes are produced 
during hematopoiesis in bone marrow. Based on 
studies in mice, a significant proportion of tissue- 
resident macrophages are now known to origi-
nate from stem cells during embryogenesis 
(Fig.  1.1) [2, 3]. These tissue macrophages 
develop from embryonic progenitor cells in the 
yolk sac or fetal liver and then self-renew and are 
thus maintained independent of blood monocytes 
[2, 6]. This is a major deviation from the tradi-
tional model of bone marrow hematopoiesis and 
the process of myeloid cell differentiation, from 
which all mononuclear phagocytes were thought 
to be derived [7]. A detailed review of hemato-
poiesis and phagocyte development is beyond the 
scope of this chapter, and we refer the reader to 
relevant articles on the topic [1–4, 8–15]. Instead, 
we highlight a few features of phagocyte devel-
opment that are important for our understanding 
of the function of each cell type.

 Mononuclear Phagocytes

Monocytes, macrophages, and dendritic cells 
(DCs) comprise cells of the mononuclear phago-
cyte system [16]. These cells are important for 
innate and adaptive immunity, and they play a 
key role as antigen-presenting cells and in main-
taining immune system homeostasis. In humans, 
monocytes comprise ~10% of all leukocytes in 
blood (considerable variability between individu-
als exists), and production (as determined by 
turnover) is on the order of 7 × 106 cells/h/kg 
body weight [17–19]. There are ~3 times more 
monocytes in the marginal pool than in circula-
tion in blood (~2 × 105 cells/ml) [17, 18]. The 
half-life for monocytes in human blood is 
~1–2  days, although there is considerable vari-
ance among individuals [17, 19]. Hematopoiesis 
maintains steady-state production of monocytes 
that originate initially from a CMP and, then 
more proximally, from a recently described pro-
genitor cell known as a macrophage-dendritic 

cell progenitor (MDP) [20, 21]. MDPs can dif-
ferentiate to monocytes or to classical or plasma-
cytoid DCs via an intermediate known as a 
common DC progenitor cell (CDP) (Fig.  1.1) 
[22]. Human monocytes are characterized by 
cytochemistry, nuclear morphology, and surface 
expression of selected receptors. For example, 
monocyte subsets can have high, intermediate, 
and low surface expression of CD14. Those with 
comparatively high levels of CD14 on the cell 
surface represent the vast majority of monocytes 
in healthy humans and are known as classical 
monocytes [22]. More recent studies have shown 
that monocytes can be segregated further into 
distinct subsets based on high or low surface 
expression of CD16 [23], or those with high or 
low expression of CX3CR1, the fractalkine 
receptor [24]. Fractalkine (CX3CL1) has a num-
ber of functions, including stimulation of adhe-
sion of leukocytes to activated endothelial cells. 
Depending on the stimulus or condition, a subset 
of monocytes can differentiate further to 
monocyte- derived dendritic cells or monocyte- 
derived macrophages in tissues (Fig. 1.1) [3]. For 
example, during severe inflammation or 
inflammation- related injuries, macrophages are 
replenished by blood-derived monocytes [3]. In 
mice, monocytes with high expression of 
CX3CR1 differentiate into long-term persisting 
tissue-resident phagocytes, whereas those with 
comparatively low CX3CR1 expression are 
inflammatory monocytes that serve as precursors 
for antigen-presenting cells [24]. Importantly, 
monocytes are innate immune effector cells that 
phagocytose (ingest) and kill a wide range of 
microbes, such as bacteria and fungi.

Tissue-resident mononuclear phagocytes are 
diverse and include macrophages (e.g., microg-
lia, osteoclasts, Kupffer cells, Langerhans cells, 
and monocyte-derived macrophages) and DCs 
(classical DCs, plasmacytoid DCs, and monocyte- 
derived DCs) [3, 9, 25]. Like monocytes, these 
cells are defined by morphology, phenotype (cell 
surface markers), and function. Macrophages 
maintain steady-state tissue homeostasis by 
phagocytosing and removing dead cells and 
debris. During infection, they ingest and kill 
microbes and produce many different chemo-
kines and cytokines that contribute to the acute 

1 Phagocytes
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inflammatory response. Tissue-resident macro-
phages are well-known for their ability to func-
tion as antigen-presenting cells and thus serve as 
a bridge between innate and acquired immunity. 
Historically, activated macrophages have been 
categorized as classic (M1) and alternative (M2), 
so named to reflect the prototypical Th1 and Th2 
mouse strains from which they were isolated [26, 
27]. In accordance with this nomenclature, M1 
macrophages are those activated by interferon 
gamma and Toll-like receptor ligands (e.g., lipo-
polysaccharide) or tumor necrosis factor (TNF- 
α), whereas M2 macrophages are activated by 
IL-4, IL-10, IL-13, or IL-33 [26–29]. M1 macro-
phages are proinflammatory and produce reactive 
nitrogen or reactive oxygen intermediates and 
cytokines such as IL-1, IL-6, and TNF-α [28, 29]. 
By comparison, M2 macrophages have been 
characterized by production of polyamines and 
IL-10 and IL-12, regulate wound healing, and in 
general suppress immune responses [28, 29]. 
Inasmuch as macrophage activation is complex 
and varied among mammals, and there is incon-
sistent use of defining features for macrophage 
activation, the M1-M2 macrophage nomencla-
ture has been brought into question recently, and 
new guidelines have been proposed [30]. 
Although it is widely acknowledged that a pri-
mary purpose of macrophages is to kill ingested 
microbes, these phagocytes are readily parasit-
ized by a number of bacterial pathogens [31]. For 
example, Brucella spp., Chlamydia pneumoniae, 
Coxiella burnetii, Francisella tularensis, 
Legionella pneumophila, Listeria monocyto-
genes, Mycobacterium tuberculosis, and 
Salmonella enterica can replicate in macro-
phages [31]. This interesting topic has been 
reviewed recently by Price and Vance, and they 
suggest several factors contribute to the ability of 
bacteria to survive and replicate within macro-
phages [31]. These factors include intracellular 
access by phagocytosis, extended host cell lifes-
pan, and nutrient availability [31]. It is also note-
worthy that macrophages have limited 
bactericidal activity compared with neutrophils, 
which are infrequently parasitized by bacteria. 
Tissue-resident macrophages are maintained in 
steady state by self-renewal, and it is only under 

immune system duress, as with acute inflamma-
tory processes, that monocytes are recruited to 
tissues to replenish tissue macrophages.

DCs have the capacity to phagocytose 
microbes and produce high levels of cytokines 
(depending on the type of DC), but their primary 
function is largely as antigen-presenting cells 
that activate naive T cells [8, 9, 32]. There are 
three or four subsets of DCs, depending on 
whether Langerhans cells are classified as macro-
phages or DCs. Langerhans cells were tradition-
ally classified as DCs, but recent gene expression 
data and their origin from fetal liver precursor 
cells are more in line with characteristics of tis-
sue macrophages [33, 34]. Regardless, 
Langerhans cells are abundant resident phago-
cytes in human skin and serve as sentinels of the 
immune system [35]. Classical DCs (cDCs; orig-
inally identified by Steinman and Cohn [36]) 
present antigen to T cells in the context of major 
histocompatibility complex (MHC) I and MHC 
II [37] molecules. These cells are present in many 
types of tissues and organs, and ultimately 
migrate (if necessary) to areas that promote inter-
action with T cells, such as the spleen or lymph 
nodes [37]. The lifespan of cDCs is relatively 
short (~1  week), and they are replenished by 
hematopoiesis from blood-borne CDPs [9]. 
Plasmacytoid DCs (pDCs) also originate from a 
CDP, but unlike cDCs, pDCs have a long lifespan 
and are involved in the response to viral infec-
tions [9]. Monocyte-derived or inflammatory 
DCs, such as TNF and iNOS-producing DCs, 
originate from monocytes during the inflamma-
tory response [9, 38]. A more detailed discussion 
of DC subsets is outside the scope of this chapter, 
but there are several recent articles on this topic 
[35, 39].

 Granulocytes

Polymorphonuclear leukocytes (PMNs or neutro-
phils) are the most numerous circulating leuko-
cytes in humans and are the most prominent 
cellular defense against bacterial and fungal 
infections. Indeed, 60% of the cells in bone mar-
row are granulocytes or granulocyte precursors, 

T. Nygaard et al.
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and ~60% of white cells in human blood are neu-
trophils [40]. Neutrophils and eosinophils are 
identified readily by cytochemistry and pheno-
type (e.g., nuclear morphology). Under steady- 
state conditions, neutrophils develop in bone 
marrow for ~14 days (5–6 days excluding mitotic 
precursors), circulate in blood for a day, and then 
enter tissues, where they remain for another 
1–2 days before undergoing apoptosis [40, 41]. 
Compared to mononuclear phagocytes, espe-
cially macrophages, the lifespan of mature neu-
trophils is short. They are terminally differentiated 
end cells. However, this short lifespan is offset by 
the tremendous number of cells produced during 
hematopoiesis. Neutrophil turnover in humans is 
approximately 1011 cells per day in an average 
healthy adult [41, 42]. Such turnover is remark-
able, and a mechanism dependent on the mono-
nuclear phagocyte system is in place to remove 
dead and dying neutrophils from tissues, thereby 
maintaining immune system homeostasis.

The myeloblast is an early neutrophil precursor 
cell and is followed in sequence by the promyelo-
cyte, myelocyte, metamyelocyte, band cell, and 
mature neutrophil [40]. As neutrophils mature in 
bone marrow, they develop protein machinery and 
specialized organelles known as granules that are 
necessary for microbicidal activity. Azurophilic or 
primary granules (peroxidase- positive granules) 
appear first during granulopoiesis and contain 
numerous antimicrobial peptides and proteins, 
including myeloperoxidase, alpha defensins, elas-
tase, cathepsin G, proteinase 3, and azurocidin [43, 
44]. Azurophilic granules are synthesized largely 
during the promyelocyte stage of cell develop-
ment. Specific granules, gelatinase granules, and 
secretory vesicles, which are peroxidase-negative, 
appear after azurophilic granules during neutro-
phil development in bone marrow [40]. The mem-
branes of the specific and gelatinase granules and 
those of the secretory vesicles contain receptors 
and other membrane-bound proteins important for 
virtually all neutrophil functions. For example, at 
least 90% of neutrophil gp91phox/p22phox het-
erodimer (flavocytochrome b558), which forms the 
nidus of the superoxide-generating NADPH oxi-
dase in neutrophils, is located in the membranes of 
these granules [45, 46]. These organelles serve as 

storage compartments for the molecules required 
for neutrophil microbicidal activity, which is dis-
cussed below. Although mature neutrophils are 
fully equipped with the molecules required for 
PMN microbicidal activity, they retain some bio-
synthetic capacity [45]. Importantly, neutrophil 
production can be rapidly increased as needed, as, 
for example, during severe systemic bacterial or 
fungal infections. This process is known as emer-
gency granulopoiesis [14, 47].

Basophils, eosinophils, and mast cells are granu-
locytes that participate in innate and acquired 
immunity. They are key cells in the response to 
allergens and function as antigen- presenting cells 
[29, 48, 49]. Basophils are not typically considered 
as phagocytes and will not be discussed further 
[48]. Eosinophils and mast cells can phagocytose 
microbes, but phagocytic capacity is either signifi-
cantly less than that of other phagocytes or incom-
pletely characterized and the role in vivo not fully 
understood [29, 49, 50]. The ability of eosinophils 
to kill bacteria has also been linked to extracellular 
release of cytotoxic molecules [51, 52]. These leu-
kocytes, like basophils, are known historically for 
their role in the host defense against parasites, espe-
cially helminths [49, 53]. Mast cell precursors 
develop in bone marrow and then migrate to tissues, 
where they differentiate and mature (Fig. 1.1) [29, 
54]. Mast cells are long-lived cells that have been 
reported to phagocytose and kill multiple  bacterial 
species [55]. However, the in vivo significance of 
this direct bactericidal activity remains unknown, 
and these cells are more characterized for their abil-
ity to coordinate immune and allergic responses. 
For simplicity, much of the discussion of phagocyte 
function is based on studies with mononuclear 
phagocytes and neutrophils. For those interested in 
a more detailed review of basophils, eosinophils, 
and mast cells, we recommend specific articles on 
these cell types [29, 48–50, 53, 56, 57].

 Recruitment, Chemotaxis, 
and Priming

The rapid recruitment of phagocytes to damaged 
tissue is critical for an effective inflammatory 
response. Circulating phagocytes must quickly 
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recognize danger signals emanating from dis-
tressed host cells, efficiently breach the postcap-
illary venule wall, and immigrate to the site of 
tissue damage to successfully resolve host injury. 
Phagocyte extravasation, namely, the migration 
from circulation into extravascular tissue, follows 
a process referred to as the leukocyte adhesion 
cascade that can be divided into four primary 
events: rolling, priming, adhesion, and transend-
othelial cell migration (TEM) (Fig. 1.2) [58, 59]. 
These events are largely coordinated by a hierar-
chical chemokine gradient and through direct 
interactions with activated host cells that act in 
concert to sequentially recruit specific phagocyte 
subsets to the site of host insult [60–62]. 
Following extravasation, phagocytes are trans-
formed from patrolling sentinel cells in circula-
tion to fully activated effector cells that play 
critical roles in orchestrating subsequent immune 
responses, destroying pathogens, and removing 
unwanted debris.

 Rolling

Circulating phagocytes appear to roll along the 
wall of postcapillary venules as they near the 
site of host tissue distress. This rolling motion is 
primarily mediated by the transient on and off 
binding of cell surface molecules called selec-

tins under the shear-force conditions encoun-
tered in postcapillary venules [63]. There are 
three members of the selectin family, with the 
nomenclature of these molecules indicating the 
cell type in which they were first identified (E 
for endothelia, L for leukocytes, and P for plate-
lets). Selectins bind to glycosylated proteins on 
the surface of adjacent host cells. Although 
P-selectin glycoprotein ligand 1 (PSGL1) was 
first identified as a ligand for P-selectin, this 
molecule is now known to be a primary ligand 
for all three selectins. E-selectin on endothelial 
cells also binds to E-selectin ligand 1 (ESL1) 
and glycosylated CD44 on the surface of phago-
cytes. Surface expression of selectins is varied 
among cell types and is dependent on the activa-
tion state of the cell. These expression attributes 
facilitate efficient targeting of phagocytes to 
specific sites of host tissue inflammation. The 
constitutive expression of L-selectin by circulat-
ing phagocytes largely mediates rolling at high 
velocities. In contrast, E-selectin is only 
expressed by activated endothelial cells early 
during the inflammatory response and acts to 
decrease the velocity of phagocytes as they near 
injured tissue. As the velocity of rolling phago-
cytes decreases, signals localized near the site 
of compromised host tissue enhance the activa-
tion state of these cells in a process referred to 
as priming.

Fig. 1.2 Neutrophil chemotaxis and transmigration. 
Migration of neutrophils from blood to infected or injured 
tissues is characterized by four distinct stages: rolling, 
priming, adhesion, and transendothelial cell migration. 
Chemokines and other chemoattractants promote neutro-

phil rolling and priming, which in turn leads to integrin- 
dependent interactions. Selectins and integrins present on 
the endothelium and neutrophils promote neutrophil 
adhesion and transendothelial migration
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 Priming

Phagocytes in circulation detect relatively low 
concentrations of host- and/or microbe-derived 
signaling molecules, such as chemokines, cyto-
kines, and bacterial N-formylated peptides, as 
they near the site of damaged tissue or infection. 
These molecules can “prime” phagocytes for 
enhanced function, and this phenomenon has 
been investigated extensively in neutrophils [64]. 
Priming of neutrophils was described originally 
as the ability of a primary agonist (at sub- 
stimulatory concentrations) to enhance or influ-
ence production of superoxide in response to a 
second stimulus [65, 66]. It is now known that 
priming enhances multiple neutrophil functions, 
including adhesion, phagocytosis, superoxide 
production, and degranulation [64, 67]. In gen-
eral, neutrophil priming promotes the timely 
recruitment of these leukocytes to damaged and 
infected tissues and enhances capacity to destroy 
infectious microbes.

Many molecules that promote phagocyte 
priming contain molecular moieties that are nor-
mally absent or concealed in the healthy host but 
are exposed during infection and injury. For 
example, infectious agents generate structurally 
conserved molecules that display pathogen- 
associated molecular patterns (PAMPs) [68]. 
These molecules include lipopolysaccharide 
(LPS) or muramyl dipeptide specific to bacteria, 
double-stranded RNA that comprises the genome 
of certain viruses, or β-glucan located on the sur-
face of fungi. Alternatively, sterile injury induces 
the release of damage-associated molecular pat-
terns (DAMPs) that are normally confined within 
the cytosol of host cells [69]. High-mobility 
group box 1 (HMGB1) and cytosolic heat-shock 
proteins are examples of DAMPs released by 
necrotic cells [69]. PAMPs and DAMPs are rec-
ognized by a number of cell surface and cytosolic 
receptors that are collectively referred to as pat-
tern recognition receptors (PRRs) [69]. These 
molecules include the Toll-like receptors, scaven-
ger receptors [70], and C-type lectin receptors 
(e.g., the mannose receptor and Dectin-1) located 
on the cell surface or within endolysosomes, as 

well as the NOD-like receptors and RIG-like 
receptors that are only found within the cytosol 
and act to recognize infection by intracellular 
pathogens. Phagocytes generally express a large 
number of PRRs, and they play a major role in 
recognizing host injury, immune surveillance, 
and directing subsequent immune responses. 
Other resident tissue cells, such as endothelial 
cells and keratinocytes, express PRRs to a lesser 
degree and can also alert the immune system to 
tissue insult [71].

In addition to priming of recruited phagocytes, 
engagement of PRRs with corresponding ligands 
activates pathways that increase local cytokine 
concentrations. These molecules contribute to the 
ongoing inflammatory process, which includes 
continued recruitment of phagocytes and other 
leukocytes toward the site of tissue damage. In 
humans, CXC-chemokine ligand 8 (CXCL8 or 
IL-8) is a major cytokine that influences neutro-
phil recruitment and activation [60], while 
CC-chemokine ligand 2 (CCL2) plays an impor-
tant role during monocyte recruitment to inflamed 
tissue [72]. Cytokines released by stimulated 
host cells bind to glycosaminoglycans (GAGs) 
such as heparin sulfate that are located on the sur-
face of endothelial cells and attached to the extra-
cellular matrix [59, 61]. As phagocytes travel 
through circulation, they encounter increasing 
concentrations of chemokines that are presented 
on the surface of vascular endothelium as they 
approach distressed tissue. These chemokines 
bind to cognate G-coupled-protein receptors on 
the surface of rolling phagocytes and induce very 
rapid cellular changes that result in arrest and 
firm adhesion to the postcapillary venule wall 
near the site of host injury.

 Adhesion

The arrest and firm adhesion of circulating phago-
cytes in response to chemokines expressed at the 
site of distressed host tissue is mediated by the 
activation and binding of integrins. Integrins are a 
class of heterodimeric cell surface proteins con-
sisting of α and β subunits. In mammals, 18 α sub-
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units and 8 β subunits have been identified that 
give rise to at least 24 different types of integrins 
[73]. The binding of activated integrins expressed 
by phagocytes to immunoglobulin superfamily 
members on the surface of activated endothelial 
cells is imperative for firm adhesion of phago-
cytes to the vascular endothelium. Integrins and 
ligands that are important during this process 
include integrins αMβ2 (CD11b/CD18 or Mac-1) 
and αLβ2 (CD11a/CD18, also known as leukocyte 
function-associated antigen 1 or LFA-1), which 
bind to intercellular adhesion molecule 1 (ICAM-
1) on endothelial cells, and α4β1 (also known as 
very late antigen 4 or VLA- 4) which binds vascu-
lar intercellular adhesion molecule 1 (VCAM-1) 
[73, 74]. In general, the integrins of unprimed cir-
culating phagocytes are not in an active state. In a 
process termed inside- out signaling, the recogni-
tion of chemokines by G protein-coupled recep-
tors on rolling phagocytes rapidly increases the 
avidity of integrins, resulting in almost immediate 
cell arrest via adhesion to adjacent activated endo-
thelial cells [75].

The avidity of integrin-mediated adhesion is 
dependent upon the affinity of individual integrin 
molecules for their ligands and by the distribu-
tion of integrins on the cell surface [76]. Inactive 
integrins are diffusely spread on the cell mem-
brane and hold a bent conformation with the 
binding region tightly pressed against the mem-
brane surface, resulting in a low affinity for cor-
responding ligands. Inside-out signaling through 
activated G protein-coupled chemokine receptors 
quickly opens this bent conformation, exposing 
the integrin-binding domain to allow high- affinity 
interactions with ligands. Inside-out signaling 
also induces integrin clustering, further increas-
ing the overall avidity of these molecules for 
ligands on the surface of endothelial cells.

When clustered integrins bind to correspond-
ing ligands, changes are induced in the cytoplas-
mic domain of these molecules that activate 
intercellular tyrosine kinase-dependent signaling 
pathways in a process referred to as outside-in 
signaling [77]. Activation of these pathways 
leads to rearrangement of the phagocyte actin 
cytoskeleton that flattens the cell against the ves-
sel wall, increasing surface area contact with the 

vascular endothelium and enabling sustained 
adherence under sheer-flow conditions. In addi-
tion, outside-in signaling further primes phago-
cytes by mobilizing factors that are important for 
antimicrobial activity and TEM into the extravas-
cular space.

 Transendothelial Cell Migration

Primed phagocytes that are firmly adhered to 
activated vasculature endothelium must exit the 
capillary lumen to reach compromised host tissue 
and perform effector immune functions. As with 
previous steps in the leukocyte adhesion cascade, 
this process is largely directed by increasing con-
centrations of different chemotactic factors in 
conjunction with signals derived from direct 
interactions with activated host cells [78]. 
Collectively these cues orchestrate the migration 
of phagocytes between or even through activated 
endothelial cells lining the postcapillary venule 
wall, across the underlying endothelial basement 
membrane, and through the extravascular space 
to the site of distressed tissue.

Once phagocytes rolling through circulation 
have become firmly adhered to activated endo-
thelium, they will often crawl in an amoeba-like 
fashion along the capillary lumen wall in search 
of suitable extravasation sites. Neutrophil and 
monocyte crawling requires interactions between 
integrin αMβ2 (Mac-1) with ICAM-1 on the sur-
face of activated endothelium [59]. Forward cell 
displacement during crawling is dependent upon 
the reorganization of the phagocyte actin cyto-
skeleton and the polarization of intracellular sig-
naling proteins, surface receptors, and adhesion 
molecules across the cell. On the leading edge of 
crawling phagocytes, new bonds are formed with 
adhesive molecules on the surface of activated 
vascular endothelium, while bonds at the trailing 
end are simultaneously broken. As phagocytes 
crawl, they extend pseudopods that probe the 
vessel wall for chemotactic factors and signals 
from underlying activated endothelial cells that 
indicate optimum sites for TEM.

The majority of phagocytes crossing the endo-
thelial layer pass through the junctions between 
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vascular endothelial cells in a process termed 
paracellular TEM [61]. A number of adhesion 
molecules expressed by both phagocytes and 
endothelial cells are important for paracellular 
TEM.  These include platelet-endothelial cell 
adhesion molecule-1 (PECAM-1 or CD31), junc-
tional adhesion molecules A and C (JAM-A and 
JAM-C), and CD99 [79]. VE-cadherin expressed 
by endothelial cells plays an important role in 
maintaining tight junctions between adjacent 
cells, and the expression of this molecule deters 
paracellular TEM [80]. Phagocytes can also pass 
directly through endothelial cells in a process 
referred to as transcellular TEM.  In some 
instances recruited phagocytes prefer the trans-
cellular path, such as TEM across brain vascula-
ture endothelium that maintain very tight 
junctions between adjacent cells [61].

Migrating phagocytes that have crossed the 
vascular endothelium encounter the next major 
barrier during extravasation—the underlying 
basement membrane that ensheathes postcapil-
lary venules. The basement membrane is com-
posed of elongated mural cells termed venular 
pericytes imbedded in a complex layer of extra-
cellular matrix proteins that include collagen IV, 
various laminins, and glycoproteins such as nido-
gens and perlecan [78]. Immigrating phagocytes 
preferentially breach the basement membrane 
between venular pericytes at areas where the den-
sity of extracellular matrix proteins is low. The 
expression of integrin ligands such as ICAM-1 
by venular pericytes allows migrating phagocytes 
to use these cells as an adhesive substrate for tra-
versing the basement membrane toward these 
extravasation hot spots [61]. Perivascular macro-
phages residing in the extravascular region adja-
cent to the basement membrane are thought to 
guide migrating phagocytes toward areas of opti-
mal extravasation via the expression of chemo-
kines such as CXCL1 and CXCL2 [78].

Once migrating phagocytes have breached the 
basement membrane, they crawl through the 
interstitial space toward increasing concentra-
tions of so-called end-stage chemotactic factors 
[78, 80]. These molecules, which include for-
mylated peptides and complement protein C5a, 
take precedence over other chemotactic factors 

and play a dominant role guiding phagocytes 
through the interstitial space directly to the site of 
host tissue injury.

 Phagocytosis and Microbicidal 
Activity

The ability of phagocytes to ingest and subse-
quently kill invading microbial pathogens is par-
amount to maintenance of host health. 
Phagocytosis is functionally defined as the intra-
cellular uptake of particles greater than 0.5 μm in 
diameter and is primarily executed by neutrophils 
and mononuclear phagocytes (monocytes, mac-
rophages, and dendritic cells). Phagocytes have 
an enormous capacity for ingestion, and surface 
area can increase up to 300% for neutrophils and 
600% for macrophages [81]. The process of 
phagocytosis is highly complex and can be con-
ceptually divided into two different phases: rec-
ognition and binding and internalization.

 Phagocytosis

Phagocyte recognition of invading microbial 
pathogens is mediated by receptors present on 
the outer surface of the host cell membrane. 
There are two primary types of receptors that are 
used to recognize microorganisms: (1) PRRs, 
which directly recognize microbial-derived struc-
tures, and (2) opsonic receptors, which recognize 
host proteins that are deposited on the microbial 
surface. Ligation of PRRs initiates a complex 
series of signal transduction cascades that modu-
late phagocyte effector functions such as 
enhanced phagocytosis, killing, and regulation of 
inflammation via cytokine production. Ligation 
of PRRs is generally insufficient to promote 
phagocytosis directly, but there are exceptions 
(e.g., Dectin-1 is a PRR that binds fungal 
β-glucans and promotes ingestion of bound 
fungi) [82–84]. Phagocytosis is most efficient in 
the presence of opsonins—soluble host mole-
cules that promote uptake—of which specific 
IgG and complement are the major constituents 
and phagocyte recognition of these molecules 
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directly mediates uptake (Fig. 1.3). IgG bound to 
the microbial surface activates the classical com-
plement pathway and leads to deposition of com-
plement C3 and derivatives. In addition, C3 can 
be deposited on the microbial surface following 
activation of the alternative pathway or the 
mannose- binding lectin pathway. Neutrophils 
and mononuclear phagocytes express distinct 
receptors for IgG (FcγRI, FcγRII, and FcγRIII) 
[85] and opsonic complement molecules C3b and 
C3bi (CR1, CR3, and CR4). Receptors that con-
tribute to phagocytosis have varied affinities for 
target ligands. For example, FcγRI is a high- 
affinity receptor, whereas FcγRII and FcγRIII are 
constitutively expressed low- to moderate- affinity 
receptors. Integrins such as αMβ2 (CR3, CD11b/
CD18, Mac-1), by contrast, dynamically equili-
brate between conformational states on the cell 
surface—a closed conformation with low affinity 
and an open conformation with high affinity [86]. 

CR3 ligand affinity can increase following cell 
activation by inflammatory mediators such as 
tumor necrosis factor-α, LPS, and 
 platelet- activating factor [87]. Efficient particle 
binding is enhanced by the engagement (simulta-
neous or sequential) of multiple receptors (of 
similar or differing types) on the phagocyte sur-
face. In addition, elaboration of cellular exten-
sions such as membrane ruffles [88] and 
macrophage filopodia [89] facilitate target bind-
ing by an actin- dependent mechanism [90], and 
membrane protrusions can be enhanced by stim-
ulation of PRRs [88, 91].

Engagement of phagocyte receptors initiates a 
complex series of molecular signals that contrib-
ute to internalization of microbes or some other 
target object (e.g., debris) and is followed by 
complete activation of antimicrobial systems. 
There is inherent diversity in signaling between 
phagocyte receptors, and the variability in signals 

Fig. 1.3 Neutrophil 
phagocytosis and 
microbicidal processes. 
Binding and ingestion of 
microbes (phagocytosis) 
are mediated optimally 
by host opsonins such as 
serum complement and 
antibody. Phagocytosis 
triggers fusion of 
cytoplasmic granules 
with the newly formed 
phagosome, thereby 
enriching the phagocytic 
vacuole with 
antimicrobial agents. 
Granule-phagosome 
fusion is followed by 
assembly and activation 
of NADPH oxidase. The 
NADPH oxidase 
produces superoxide 
(O2•−), which in turn 
leads to the production 
of hypochlorous acid 
(HOCl) and other 
reactive oxygen species 
(ROS)
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transduced extends to cell type-specific differ-
ences elicited by the same receptor. Although a 
detailed compendium on phagocyte receptor sig-
nal transduction is beyond the scope of this sec-
tion (for reviews on the topic, see [92, 93]), we 
highlight features of FcR-mediated signaling 
elicited by a prototypical phagocytosis receptor. 
The complex signals govern cellular processes 
such as membrane reorganization and cytoskele-
tal remodeling that are required for phagocytosis. 
The cytosolic domain of the Fc receptor contains 
a region known as the immunoreceptor tyrosine- 
based activation motif (ITAM), which serves as a 
substrate for phosphorylation by tyrosine kinases 
of the Src family such as Lyn and Hck [94]. The 
signaling cascade is amplified by spleen tyrosine 
kinase (Syk), a cytosolic kinase essential for 
phagocytosis [95], and is followed by recruit-
ment of adapter proteins and activation of lipid- 
modifying enzymes such as phosphatidylinositol 
3-kinase and small GTPases [96]. Actin polymer-
ization is requisite for phagocytosis and is facili-
tated by the Arp2/3 nucleator complex, a 
seven-protein complex that nucleates branched 
actin filaments. Actin polymerization, in con-
junction with progressive FcR binding, provides 
the cytoskeletal framework to advance the phago-
cyte plasma membrane over the particle. Actin is 
concentrated at the tips of the advancing mem-
brane cup during particle internalization, and 
depolymerization of actin occurs at the base of 
the cup. In addition, several classes of myosin, 
including myosin X, have been implicated in 
execution of FcR-mediated phagocytosis [97]. 
Although the final stage of particle internaliza-
tion requires sealing of the opposing membrane 
leaflets to complete formation of the nascent vac-
uole, little is known about the mechanism of 
closure.

 Maturation of Phagosomes

The newly formed phagosome lacks quintessen-
tial antimicrobial properties, and its lumen 
resembles the extracellular environment. To 
assemble microbicidal machinery and acquire 
antimicrobial properties, the nascent phagosome 

undergoes a dynamic process of maturation. In 
macrophages, this process starts immediately 
after the phagosome is sealed and is dependent 
on the endocytic pathway. In mononuclear 
phagocytes, nascent phagosomes fuse with early 
endosomes, followed by fusion with late endo-
somes and lysosomes, to yield a hybrid vacuole 
called phagolysosome. For simplicity, the terms 
phagosome and phagolysosome will be used 
interchangeably. Sequential early and late 
endosome- phagosome fusion events progres-
sively acidify the lumen of the macrophage 
phagosome largely by incorporating vacuolar 
ATPase complexes (V-ATPases) [98]. This is fol-
lowed by fusion of phagosomes with lysosomes, 
which, in turn, enrich the vacuole lumen with 
lysosomal proteases and other hydrolytic 
enzymes. The pH of the mature macrophage 
phagosome is ~5–6 [99–101], which is optimal 
for lysosomal protease activity [102]. In contrast 
to macrophages, the pH of the DC phagosome is 
near neutral, if not slightly alkaline (pH 7.0–7.6). 
This attribute of DCs is due to the comparatively 
limited phagosomal V-ATPase activity and sus-
tained intraphagosomal production of superoxide 
by NADPH oxidase, a process that consumes 
protons [100]. More recent studies suggest 
NADPH oxidase alters the redox capacity of DC 
phagosomes and thereby controls proteolysis (of 
antigens) mediated by cysteine proteases [103]. 
In addition, DC lysosomes have reduced levels of 
proteases and associated proteolytic activity 
compared with those of macrophages [104]. 
From a functional standpoint, DC antigen pro-
cessing and presentation are optimal in phago-
somes that maintain near neutral/slightly basic 
pH and have limited lysosomal protease activity 
[100, 104, 105]. It is noteworthy that not all stud-
ies agree about the pH of the DC phagosome or 
the mechanism by which proteolysis is regulated 
[100, 103]. This may be a reflection of differ-
ences in DC subsets.

In contrast to mononuclear phagocytes [106], 
in which phagosome maturation involves the 
endocytic pathway to a significant extent, matu-
ration of neutrophil phagosomes is based largely 
on fusion with specialized granules. Neutrophils 
can undergo granule exocytosis (also called 
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degranulation), whereby the granules mobilize to 
and fuse with the plasma membrane, and release 
their contents into the extracellular space. 
Alternatively, granules fuse with forming phago-
somes, and the lumen and membrane are enriched 
with granule proteins. In the resting state, human 
neutrophils in circulation have limited capacity to 
interface with the external environment, as there 
are relatively few proinflammatory receptors 
present on the cell surface. However, this attri-
bute changes rapidly upon exposure to very low 
levels of host or microbe-derived proinflamma-
tory molecules, such as chemokines or PAMPs. 
The cytoplasmic granules and secretory vesicles 
fuse with membranes in a hierarchy that is stimu-
lus and calcium threshold dependent: secretory 
vesicles are mobilized first, followed by tertiary 
granules (gelatinase granules), secondary gran-
ules (specific or beta granules), and ultimately 
primary granules (azurophilic or alpha granules) 
[43]. Consistent with their ability to mobilize 
readily, secretory vesicles enrich the cell surface 
with receptors and other molecules needed for 
chemotaxis, transmigration, and microbicidal 
activity. The primary and secondary granules 
were known traditionally as peroxidase-positive 
and peroxidase-negative granules, respectively, 
nomenclature that reflects the presence and 
absence of myeloperoxidase (MPO). As indi-
cated above, these granules contain antimicrobial 
peptides and enzymes required for oxygen- 
dependent and oxygen-independent killing of 
microbes by neutrophils. For a more comprehen-
sive review of neutrophil granule synthesis, con-
tent, and mobilization, we refer the reader to 
excellent articles on the topic [43, 44, 107].

Compared with macrophages, there are fewer 
V-ATPase channels in neutrophil phagosome 
membranes early after ingestion, and the activity 
of these molecules is inhibited by reactive oxy-
gen species [108, 109]. Notably, the pH of neu-
trophil phagosomes is near neutral (pH ~7.2) 
[99]. Although not all findings concur about the 
initial pH of neutrophil phagosomes, neutral pH 
in the phagocytic vacuole is needed for optimal 
bactericidal activity, and proton channel activity 
is required to offset charge differential caused by 
production of superoxide by NADPH oxidase 

(see below) [99, 109–112]. Moreover, charge 
compensation in neutrophils is essential for opti-
mal NADPH oxidase activity, and protons are 
needed for subsequent formation of hydrogen 
peroxide (H2O2) and hypochlorous acid (HOCl), 
each of which is important for oxygen-dependent 
killing of microbes [110]. In the end, multiple 
factors contribute to regulation of phagosome pH 
and function, including vesicle fusion events, 
production of superoxide, redox potential, 
recruitment of V-ATPases, and proton channel 
activity, each of which appears specific to phago-
cyte function and type [113].

 Production of Reactive Oxygen 
Species

Professional phagocytes use oxygen-dependent 
and oxygen-independent processes to eliminate 
ingested microorganisms. Phagocytes have two 
main oxygen-dependent antimicrobial systems: 
NADPH oxidase and inducible nitric oxide syn-
thase (iNOS). NADPH oxidase is a multicompo-
nent enzyme complex that produces superoxide in 
activated cells. In unactivated cells, NADPH oxi-
dase components are segregated in membrane and 
cytosolic compartments. Flavocytochrome b558 is a 
heterodimeric transmembrane protein comprised 
of gp91phox (NOX2) and p22phox subunits; it 
contains the electron transport machinery for the 
enzyme complex and forms the nidus of the 
assembling oxidase at the plasma or phagosome 
membrane. p47phox, p67phox, p40phox, and the 
small GTPase Rac (Rac1 or Rac2) are oxidase 
components located in the cytosol of resting cells. 
Upon phagocyte activation, p47phox, p67phox, 
and p40phox translocate to the plasma or phago-
some membrane en bloc and interact directly with 
flavocytochrome b558. Rac translocates to the 
membrane independent of the other cytosolic 
components and, in turn, associates with compo-
nents (p67phox and flavocytochrome b558) of the 
assembling enzyme complex [113]. NADPH oxi-
dase catalyzes the transfer of electrons from cyto-
solic NADPH to molecular oxygen, thereby 
producing O2•−. Although O2•− is weakly microbi-
cidal, it is rapidly converted to other, more effec-
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